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Abstract

We discuss two nonlocal models of electrodynamics in which the nonlocality is induced by the acceleration of the
observer. Such an observer actually measures an electromagnetic field that exhibits persistent memory effects. We compare
Mashhoon’s model with a new ansatz developed here in the framework of charge & flux electrodynamics with a constitutive
law involving the Levi-Civita connection as seen from the observer’s local frame and conclude that they are in partial
agreement only for the case of constant acceleration. q 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

w x2As pointed out by Einstein 1 , in special relativ-
ity theory it is assumed that the rate of a fundamental
Ž .‘ideal’ clock depends on its instantaneous speed
and is not affected by its instantaneous acceleration.
This is usually called the ‘clock hypothesis’; see
w x2–4 for more recent discussions of this assumption.
The decay of elementary particles obeys this hypoth-

w xesis very well as shown by Eisele 5 for the weak
decay of the muon.

If we study electrodynamics, for instance, in an
Ž w x.accelerated reference frame see 6 , then we have to

) Corresponding author.
Ž .E-mail address: mashhoonb@missouri.edu B. Mashhoon .

1 Permanent address: Inst. Theor. Physics, Univ. of Cologne,
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2 The hypothesis regarding accelerated rods and clocks is men-
tioned in a footnote on p. 60.

presuppose corresponding hypotheses for the mea-
surement of the electric and magnetic fields, the
electric charge, etc. In this way, we arrive at the
hypothesis of locality that has been extensively in-

w xvestigated 7–11 . Replacing the curved worldline of
the accelerated observer by its instantaneous tangent
vector is reasonable if the intrinsic spacetime scales
of the phenomena under consideration are negligibly
small compared to the characteristic acceleration
scales that determine the curvature of the worldline;
otherwise, the past worldline of the observer must be
taken into account. This would then result in a
nonlocal electrodynamics for accelerated systems.

Nonlocal constitutive relations have been studied
in the phenomenological electrodynamics of contin-

w xuous media for a long time 12,13 . In basic field
theories, form-factor nonlocality has been the subject
of extensive investigations. The main problem with
such field theoretical approaches has been that they
defy quantization. A review of nonlocal quantum
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field theories and their insurmountable difficulties
w xhas been given by Marnelius 14 . The present work

is concerned with a benign form of nonlocality that
is induced by the acceleration of the observer.

The hypothesis of locality refers directly to accel-
eration; therefore, one can develop an alternative
approach in which the acceleration enters as the
decisive quantity. This type of nonlocality, if it refers
to time, would involve persistent memory effects.
Materials with memory have been extensively stud-
ied. However, we are interested in the ‘material’
vacuum – and in this context our Letter is devoted to
a comparison of two models involving acceleration-
induced nonlocality.

2. Mashhoon’s model

The observational basis of the special theory of
relativity generally involves measuring devices that
are accelerated; for instance, static laboratory devices
on the Earth participate in its proper rotation. The
standard extension of Lorentz invariance to acceler-
ated observers in Minkowski spacetime is based on
the hypothesis of locality, namely, the assumption
that an accelerated observer is locally equivalent to a
momentarily comoving inertial observer. The world-
line of an accelerated observer in Minkowski space-
time is curved and this curvature depends on the
observer’s translational and rotational acceleration
scales. The hypothesis of locality is thus reasonable
if the curvature of the worldline could be ignored,
i.e. if the phenomena under consideration have in-
trinsic scales that are negligible as compared to the
acceleration scales of the observer. The accelerated
observer passes through a continuous infinity of
hypothetical comoving inertial observers along its
worldline; therefore, to go beyond the hypothesis of
locality, it appears natural to relate the measurements
of an accelerated observer to the class of instanta-
neous comoving inertial observers.

Consider, for instance, an electromagnetic radia-
tion field F in an inertial frame and an acceleratedi j

observer carrying an orthonormal tetrad frame
i Ž .e t along its worldline. Here t is its proper time,a

the Latin indices i, j, k, . . . , which run from 0 to 3,
Ž .refer to spacetime coordinates holonomic indices ,

while the Greek indices a , b , g , . . . , which run

ˆ ˆ Ž .from 0 to 3, refer to anholonomic frame indices,
Ž .and we choose the signature q,y,y,y . The hy-

pothesis of locality implies that the field as measured
by the observer is the projection of F upon thei j

frame of the instantaneously comoving inertial ob-
server, i.e.

F t sF ei e j . 1Ž . Ž .ab i j a b

On the other hand, measuring the properties of the
radiation field would necessitate finite intervals of
time and space that would then involve the curvature
of the worldline. The most general linear relation-
ship between the measurements of the accelerated
observer and the class of comoving inertial observers
consistent with causality is

t
X X XgdFF t sF t q K t ,t F t dt ,Ž . Ž . Ž . Ž .Hab a b a b gd

t0

2Ž .

where FF is the field actually measured, t is theab 0

instant at which the acceleration begins and the
kernel K is expected to depend on the acceleration
of the observer. A nonlocal theory of accelerated

w xobservers has been developed 9,10 based on the
Ž .assumptions that i K is a convolution-type kernel,

X Ž .i.e. it depends only on tyt , and ii the radiation
field never stands completely still with respect to an
accelerated observer. The latter is a generalization of
a consequence of Lorentz invariance for inertial ob-
servers to all observers.

In the space of continuous functions, the Volterra
Ž .integral Eq. 2 provides a unique relationship be-

Ž .tween FF and F . It is possible to express 2 asab a b

t
X X XgdF t sFF t q R t ,t FF t dt ,Ž . Ž . Ž . Ž .Hab a b a b gd

t0

3Ž .

where R is the resolvent kernel and if K is a
Ž .convolution-type kernel as we have assumed in i ,

Ž X . Ž .then so is R, i.e. RsR tyt . Assumption ii
then implies that

dL tqtŽ .0 y1R t s L t , 4Ž . Ž . Ž .0dt
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where R and L are 6=6 matrices and L is defined
ˆŽ .by 1 expressed as FsL F in the six-vector nota-

ˆtion. Here F denotes the field as referred to the
anholonomic frame. This nonlocal theory, which is
consistent with all observational data available at

w xpresent, has been described in detail elsewhere 10 .
It proves interesting to provide a concrete exam-

Ž .ple of the nonlocal relationship 2 . Imagine an
observer that moves uniformly in the inertial frame
along the y-axis with speed cb for t-t and for0

tGt rotates with uniform angular speed V about0

the z-axis on a circle of radius r, bsr Vrc, in the
Ž .x, y -plane, see Fig. 1. In this case,

ei sg 1,yb sinw ,bcosw ,0 ,Ž .0̂

ei s 0,cosw ,sinw ,0 ,Ž .1̂

ei sg b ,ysinw ,cosw ,0 ,Ž .2̂

ei s 0,0,0,1 , 5Ž . Ž .3̂

Ž . Ž .in ct, x, y, z coordinates with wsV ty t s0
Ž .g V tyt . Here w is the azimuthal angle in the0

Ž .x, y -plane and g is the Lorentz factor. Using six-
vector notation,

Ê EEEEEF ™ , FF ™ , 6Ž .Ž . Ž .ab a b BBBBBB̂

one can show that with respect to the tetrad frame
Ž .5

t a
X X Xˆ ˆ ˆEEEEEsEq v=E t y =B t dt , 7Ž . Ž . Ž .H

ct0

t a
X X Xˆ ˆ ˆBBBBBsBq =E t qv=B t dt , 8Ž . Ž . Ž .H

ct0

where a is the constant centripetal acceleration of
the observer and v is its constant angular velocity.
These quantities can be expressed with respect to the

i Ž 2 .triad e as a s ycbg V , 0, 0 and v sA
Ž 2 .0, 0, g V . For an arbitrary accelerated observer,

Ž . Ž .we expect that the relations analogous to 7 and 8
would be much more complicated.

Fig. 1. The path of an observer in space moving with constant
angular velocity around the z-axis for t )t .0

Imagine now a general congruence of accelerated
Ž . Ž .observers such that relations similar to 2 and 3

hold for each member of the congruence. The re-
Ž .quirement that the electromagnetic field F or Fi j a b

satisfy Maxwell’s equations would then imply, via
Ž .3 , that the field FF would satisfy certain compli-ab

cated integro-differential equations, which could then
be regarded as the nonlocal Maxwell equations for
FF . Instead of this system, we give here a different,ab

but analogous, acceleration-induced nonlocal electro-
dynamics and study some of its main properties.

3. Charge & flux electrodynamics with a new
nonlocal ansatz

The electrodynamics of charged particles and flux
w xlines, see 15,16 and the references cited therein,

involves the electromagnetic field strength F – thatab

is defined via the Lorentz force law and is directly
related to the conservation law of magnetic flux – as
well as the electromagnetic excitation HH ab that is
directly related to the electric charge conservation.
The corresponding Maxwell equations are metric-free

Žand in Ricci calculus in arbitary frames read cf.
w x.17,18

E F yC d F s0 , 9Ž .w a bg x w a b g xd

1 1ab a gb b ag aE HH y C HH y C HH sJJ . 10Ž .b bg bg2 2

Here JJ a is the electric current and the C’s are the
components of the object of anholonomicity:

C g [2 ei e j E e g syC g . 11Ž .ab a b w i j x ba
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Ordinarily for vacuum, we would have the constitu-
tive equation

ab am bn'HH s yg g g F . 12Ž .mn

However, this reformulation of electrodynamics al-
lows for much more general constitutive relations
between HH ab and F . In particular, it is possibleab

to develop a nonlocal ansatz based on a generaliza-
Ž .tion of Eq. 12 along the lines suggested by Obukhov

w xand Hehl 15

ab am bn'HH t ,j s yg g gŽ .

= KK rs t ,t X ,j F t
X ,j dt

X ,Ž . Ž .H mn rs

13Ž .

where the kernel KK corresponds to the response of
the medium and j A, As1,2,3, are the Lagrange
coordinates of the medium.

As an alternative to Mashhoon’s model but along
Ž .the same line of thought, see equation Eq. 2 , one

can develop an acceleration-induced nonlocal consti-
Ž .tutive relation in vacuum via equation Eq. 13 by

using the ansatz,

ab am bn'HH t s yg g g F tŽ . Ž .mn

t
X Xryc G tyt F tŽ . Ž .H 0m rn

t0

X X XrqG tyt F t dt , 14Ž . Ž . Ž .0n m r

where the integral is over the worldline of an accel-
erated observer in Minkowski spacetime as before.
Here the response of the ‘medium’ is simply given
by the Levi-Civita connection of the accelerated
observer in vacuum and the local constitutive rela-

Ž .tion Eq. 12 is recovered for inertial observers.
We recall that in an orthonormal frame the con-

w xnection is equivalent to the anholonomicity, see 17 :

1dG [g G s yC qC yCŽ .abg gd a b a bg bga ga b2

syG . 15Ž .agb

Ž .If we invert 15 , we find that C sy2 G .abg w a b xg

In the following, we explore the consequences of
Ž .the new ansatz Eq. 14 for a general accelerated

observer in Minkowski spacetime.

4. The new ansatz and the accelerating and rotat-
ing observer

w xIt has been shown in 19,20 , and the references
cited therein, that the orthonormal frame e of ana

arbitrary observer with local 3-acceleration a and
local 3-angular velocity v reads

B1 v
e s E y =x E ,0̂ 0 Ba ž /c1q Px2c

e sE , 16Ž .A A

where the barred coordinates are the standard normal
coordinates adapted to the worldline of the acceler-
ated observer. The coframe q a can be computed by
inversion. We find

a
0̂ 0 0q s 1q Px dx sNdx ,2ž /c

Av
A A 0 A A 0q sdx q =x dx sdx qN dx . 17Ž .ž /c

Ž .In the 1q3 -decomposition of spacetime, N and
AN are known as lapse function and shift Õector,

respectively. The frame and the coframe are or-
thonormal. The metric reads as follows:

ds2 sh q a mq b
a b

2 2a v 20s 1q Px y =x dxŽ .2 ž /ž / cc

v
0 A A By2 =x dx dx yd dx dx ,A Bž /c A

18Ž .

B C A AŽ .where v=x se v x , asa e , and aA A B C A
A ise a .i
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Starting with the coframe, we can read off the
Ž .connection coefficients for vanishing torsion by

using Cartan’s first structure equation dq a syG a
b

b a a inq with G sG dx . By construction, theb i b

connection projected in spacelike directions van-
ishes, since we have spatial Cartesian laboratory
coordinates. Thus we are left with the following
nonvanishing connection coefficients:

aA
G syG s ,ˆ ˆ00 A 0 A0 2c

v C

G syG se . 19Ž .0 A B 0 B A A BC c

The first index in G is holonomic, whereas the
second and third indices are anholonomic. If we
transform the first index, by means of the frame

icoefficients e , into an anholonomic one, then wea

find the totally anholonomic connection coefficients
as follows:

a rc2
A

G syG s ,ˆ ˆ ˆ ˆ00 A 0 A0 21qaPxrc

e v CrcA BC
G syG s . 20Ž .ˆ ˆ0 A B 0 B A 21qaPxrc

In general, of course, the translational acceleration a
and the angular velocity v are functions of time.

Ž .Let us return to 14 . If we study the electric
Ž .sector of the theory, we find, because of 19 ,

tˆ ˆ ˆ0 B 00 BD CHH t sh h F t yc G FŽ . Ž . Žˆ ˆH0 D 00 C D
t0

XCqG F dt 21Ž ..ˆ0 D 0C

or

t
X XDsEq v tyt =E tŽ . Ž .H

t0

Xa tytŽ .
X Xy =B t dt . 22Ž . Ž .

c

Similarly, for the magnetic sector, the corresponding
relations read

t ˆA B A D BE 0 CHH sh h F yc G F qG FŽ ˆHD E 0 D 0 E 0 D C E
t0

ˆ X0 CqG F qG F dt 23Ž ..ˆ0 E D0 0 E DC

or

t
X XHsBq v tyt =B tŽ . Ž .H

t0

Xa tytŽ .
X Xq =E t dt , 24Ž . Ž .

c

respectively. Clearly, for constant a and v our
Ž . Ž .nonlocal relations 22 and 24 are the same as Eq.

Ž . Ž .7 and Eq. 8 provided we identify HH with FF, i.e.
we postulate that the field actually measured by the
accelerated observer is the excitation HH. This agree-
ment does not extend to the case of nonuniform
acceleration, however, as will be demonstrated in the
next section.

5. Nonuniform acceleration

Ž .To show that the new ansatz Eq. 14 is different
Ž .from Mashhoon’s ansatz Eq. 2 for the case of

nonuniform acceleration even when we identify HH

with FF, we proceed via contradiction. That is, let us
Ž .assume that FF sHH and hence from Eq. 22ab a b

Ž .and Eq. 24

K yKv a
K t s , 25Ž . Ž .

K Ka v

Ž . Ž .where K sv t PI and K sa t PIrc. Here I ,v a A
Ž .I sye , is a 3=3 matrix that is propor-A BC A BC



( )U. Muench et al.rPhysics Letters A 271 2000 8–15 13

tional to the operator of infinitesimal rotations about
Ž .the e -axis. We must now prove that in general R tA

Ž .given by Eq. 4 cannot be the resolvent kernel
Ž . Ž .corresponding to K t given by Eq. 25 .

To this end, consider an observer that is acceler-
ated at t s0 and note that for kernels of Faltung0

Ž . Ž .type in equations Eq. 2 and Eq. 3 we can write

ˆ ˆFFs IqK F and Fs IqR FF , 26Ž . Ž . Ž .

Ž .respectively, where f s is the Laplace transform of
Ž .f t defined by

`
ystf s [ f t e dt 27Ž . Ž . Ž .H

0

and I is the unit 6=6 matrix. Hence, the relation
between K and R may be expressed as

IqK IqR s I . 28Ž . Ž . Ž .

Imagine now an observer that is at rest on the
z-axis for y`-t-0 and undergoes linear acceler-

Ž .ation along the z-axis at ts0 such that a t sg)0
Ž . Ž .for 0Ft-a and a t s0 for tGa see Fig. 2 .

That is, the acceleration is turned off at tsa and
thereafter the observer moves with uniform speed

Ž .ctanh garc along the z-axis to infinity. Thus in
Ž . Ž .Eq. 25 , K s0 and K sa t I rc. On the otherv a 3

Ž .hand, one can show that Eq. 4 can be expressed in
this case as

U VR t sa t , 29Ž . Ž . Ž .yV U

Ž .where UsJ sinhQ , Vs I coshQ , and J s3 3 3 A B

d yd d . Here we have set cs1 andA B A3 B3

t g t , 0Ft-a ,
Q t s a t dts 30Ž . Ž . Ž .H ½ g a , tGa .0

Fig. 2. The acceleration of an observer that is uniformly acceler-
ated only during a finite interval from t s0 to t s a .

Ž .It is now possible to work out Eq. 28 explicitly and
conclude that for

X s [a t sinhQ , Y s [a t coshQ ,Ž . Ž . Ž . Ž .

Z s [a t , 31Ž . Ž . Ž .

we must have

XsYZ , YsZ 1qX . 32Ž . Ž .

These relations imply that

Z sŽ .
Y s s . 33Ž . Ž .21yZ sŽ .

On the other hand, we have

` g
yst ya sZ s s a t e dts 1ye 34Ž . Ž . Ž . Ž .H

s0

and

`1
Q yQ ystY s s a t e qe e dtŽ . Ž . Ž .H

2 0

Ž . Ž .y syg a y sqg ag 1ye 1ye
s q . 35Ž .

2 syg sqg
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Ž . Ž . Ž . w 2Ž .xFig. 3. Plot of the functions Y s and W s [ Z s r 1y Z s
for a g s2.

Ž .We consider only the region s)g in which X s
Ž . Ž .and Y s remain finite for a™`. Comparing 35

with

Z gs 1yeya sŽ .
s , 36Ž .2 22 2 ya s1yZ s yg 1yeŽ .

Ž .we find that, contrary to 33 , they do not agree
Ž .except in the a™` limit see Fig. 3 . Therefore, we

conclude that the two models are different if one
considers arbitrary accelerations.

6. Discussion

If one rewrites Mashhoon’s nonlocal electrody-
namics in the framework of charge & flux electrody-
namics in vacuum by substituting the generalization

Ž .of equation Eq. 3 for a congruence of accelerated
Ž . Ž .observers in equations Eq. 9 –Eq. 12 , one finds a

rather complicated implicit nonlocal constitutive law.
The Maxwell equations expressed in terms of the

Ž . Ž .excitations D, H and field strengths E, B remain
the same, a fact which is significant since otherwise
the conservation laws of electric charge and mag-
netic flux would be violated.

In this Letter, we have developed an alternative
nonlocal constitutive ansatz within the framework of
charge & flux electrodynamics such that the nonlo-

cality is induced by the acceleration of the observer
in a similar way as in Mashhoon’s model.

An explicit example of nonuniform acceleration
has been used to show that the two nonlocal pre-
scriptions discussed here are in general different.
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