A note on post-Riemannian structures of spacetime

Friedrich W. Hehl^{*} Uwe Muench[†]

Institute for Theoretical Physics, University of Cologne D-50923 Köln, Germany

Abstract

A four-dimensional differentiable manifold is given with an arbitrary linear connection $\Gamma_{\alpha}{}^{\beta} = \Gamma_{i\alpha}{}^{\beta} dx^{i}$. Megged [1] has claimed that he can define a metric $G_{\alpha\beta}$ by means of a certain integral equation such that the connection is compatible with the metric. We point out that Megged's implicite definition of his metric $G_{\alpha\beta}$ is equivalent to the assumption of a vanishing nonmetricity. Thus his result turns out to be trivial.

In the metric-affine theory of gravitation [2, 3], spacetime is assumed to be a four-dimensional differentiable manifold equipped with a linear connection $\Gamma_{\alpha}{}^{\beta}$ and, *independently*, with a metric $g_{\alpha\beta}$. Ne'eman and one of us proposed methods [4, 5] how one could measure the torsion $T^{\alpha} := D\vartheta^{\alpha}$ (here ϑ^{α} is the coframe) and the nonmetricity $Q_{\alpha\beta} := -Dg_{\alpha\beta}$ of spacetime. In a recent note, Megged [1] has claimed that the use of the nonmetricity $Q_{\alpha\beta}$ is misleading in some sense, since one can define a metric, provided the connection is given, such that it is automatically "connection compatible", if we use his words. We will point out that this rests on the hidden assumption of a vanishing nonmetricity. Since Megged discards the original independent metric $g_{\alpha\beta}$ as a meaningful physical field, there is no way that nonmetricity could enter his theory later.

^{*}E-mail address: hehl@thp.uni-koeln.de

[†]E-mail address: muench@thp.uni-koeln.de

1 Metric-affine spacetime

If a metric $g_{\alpha\beta}$ and a connection $\Gamma_{\alpha}{}^{\beta}$ are given, for the conventions see [2], then we can raise and lower indices by means of $g_{\alpha\beta}$, such as in $\Gamma_{\alpha\beta} := \Gamma_{\alpha}{}^{\gamma}g_{\gamma\beta}$, for example. With the definition of the nonmetricity $Q_{\alpha\beta} := -Dg_{\alpha\beta}$, it is straightforward to compute the symmetric part of the connection (see [6] or [2, eq. (3.10.6)]):

$$2\Gamma_{(\alpha\beta)} = dg_{\alpha\beta} + Q_{\alpha\beta} . \tag{1}$$

These are 40 equations, and *no relation* between metric and connection has been assumed.

2 Riemann-Cartan spacetime

If we assume the nonmetricity to vanish, then we find a Riemann-Cartan geometry:

$$Q_{\alpha\beta} = 0 \quad \Rightarrow \quad 2\Gamma_{(\alpha\beta)} = dg_{\alpha\beta} \;.$$
 (2)

We can choose the coframe to be orthonormal (orthonormal gauge),

$$g_{\alpha\beta} \stackrel{*}{=} o_{\alpha\beta} := \text{diag}(+1, -1, -1, -1) ,$$
 (3)

then

$$\Gamma_{(\alpha\beta)} \stackrel{*}{=} 0 \quad \text{or} \quad \Gamma_{\alpha\beta} \stackrel{*}{=} -\Gamma_{\beta\alpha} ,$$
(4)

i. e., we are left with 24 independent components of a Lorentz connection. Thus the connection one-form is SO(1,3)-valued, describing the fact, that the scalar product of two vectors is *invariant* under parallel transport in such a spacetime.

3 Megged's ansatz

He allows only for a connection to be the primary geometrical quantity. Let us call his connection $\hat{\Gamma}_{\alpha}{}^{\beta}$. Then he defines *implicitly* a metric $G_{\alpha\beta} = G_{\beta\alpha}$ by the relation

$$\hat{\Gamma}_{\alpha}{}^{\gamma}G_{\gamma\beta} + \hat{\Gamma}_{\beta}{}^{\gamma}G_{\alpha\gamma} = dG_{\alpha\beta} , \qquad (5)$$

see his equations [1, eq. (7)] and [1, eq. (8)]. The $G_{\alpha\beta}$, defined by (5), can be taken for raising and lowering indices, such as in $\hat{\Gamma}_{\alpha\beta} := \hat{\Gamma}_{\alpha}{}^{\gamma}G_{\gamma\beta}$, for example. Then (5) can be rewritten as

$$2\Gamma_{(\alpha\beta)} = dG_{\alpha\beta} . \tag{6}$$

If we compare (6) with (1), we recognize that the ansatz (5), which represents 40 independent equations, is equivalent to the assumption

$$\hat{Q}_{\alpha\beta} := -\hat{D}G_{\alpha\beta} = 0.$$
⁽⁷⁾

Of course, this can also be seen directly from (5), since

$$dG_{\alpha\beta} - \hat{\Gamma}_{\alpha}{}^{\gamma}G_{\gamma\beta} - \hat{\Gamma}_{\beta}{}^{\gamma}G_{\alpha\gamma} =: \hat{D}G_{\alpha\beta} .$$
(8)

In other words, the equation (5), postulated by Megged, amounts to the assumption of a vanishing nonmetricity $\hat{Q}_{\alpha\beta} = 0$. And then it is not surprising to fall back to the metric-compatible Riemann-Cartan spacetime.

Acknowledgments: We are grateful to Ofer Megged for discussions and for making his paper available to us prior to publication.

References

- [1] O. Megged: *Post-Riemannian spacetimes admit a causal structure*; Los Alamos eprint archive gr-qc/9706068, 22 June 1997.
- [2] F. W. Hehl, J. D. McCrea, E. W. Mielke, Y. Ne'eman: Metric-affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance. Physics Reports 258 (1995) 1–171.
- [3] F. Gronwald and F. W. Hehl: On the gauge structure of gravity. In Proc. of the 14th Course of the School of Cosmology and Gravitation on Quantum Gravity, held at Erice, Italy, May 1995. P. G. Bergmann, V. de Sabbata, and H.-J. Treder, editors (World Scientific, Singapore 1996).
- [4] F. W. Hehl: On the kinematics of the torsion of spacetime. Found. Phys. 15 (1985) 451–471.
- Y. Ne'eman and F. W. Hehl: Test matter in a spacetime with nonmetricity. Class. Quantum Grav. 14 (1997) A251-A259.
- [6] J. A. Schouten: *Ricci-Calculus*, 2nd ed. (Springer, Berlin 1954).