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Abstract

A four-dimensional differentiable manifold is given with an arbi-
trary linear connection Γαβ = Γiαβ dxi. Megged [1] has claimed that
he can define a metric Gαβ by means of a certain integral equation
such that the connection is compatible with the metric. We point out
that Megged’s implicite definition of his metric Gαβ is equivalent to
the assumption of a vanishing nonmetricity. Thus his result turns out
to be trivial.

In the metric-affine theory of gravitation [2, 3], spacetime is assumed to be
a four-dimensional differentiable manifold equipped with a linear connection
Γα

β and, independently, with a metric gαβ. Ne’eman and one of us proposed
methods [4, 5] how one could measure the torsion T α := Dϑα (here ϑα is the
coframe) and the nonmetricityQαβ := −Dgαβ of spacetime. In a recent note,
Megged [1] has claimed that the use of the nonmetricity Qαβ is misleading in
some sense, since one can define a metric, provided the connection is given,
such that it is automatically “connection compatible”, if we use his words.
We will point out that this rests on the hidden assumption of a vanishing
nonmetricity. Since Megged discards the original independent metric gαβ as
a meaningful physical field, there is no way that nonmetricity could enter his
theory later.

∗E-mail address: hehl@thp.uni-koeln.de
†E-mail address: muench@thp.uni-koeln.de

1



1 Metric-affine spacetime

If a metric gαβ and a connection Γαβ are given, for the conventions see [2],
then we can raise and lower indices by means of gαβ, such as in Γαβ := Γαγgγβ ,
for example. With the definition of the nonmetricity Qαβ := −Dgαβ , it is
straightforward to compute the symmetric part of the connection (see [6] or
[2, eq. (3.10.6)]):

2Γ(αβ) = dgαβ +Qαβ . (1)

These are 40 equations, and no relation between metric and connection has
been assumed.

2 Riemann-Cartan spacetime

If we assume the nonmetricity to vanish, then we find a Riemann-Cartan
geometry:

Qαβ = 0 ⇒ 2Γ(αβ) = dgαβ . (2)

We can choose the coframe to be orthonormal (orthonormal gauge),

gαβ
∗
= oαβ := diag(+1,−1,−1,−1) , (3)

then

Γ(αβ)
∗
= 0 or Γαβ

∗
= −Γβα , (4)

i. e., we are left with 24 independent components of a Lorentz connection.
Thus the connection one-form is SO(1, 3)-valued, describing the fact, that the
scalar product of two vectors is invariant under parallel transport in such a
spacetime.

3 Megged’s ansatz

He allows only for a connection to be the primary geometrical quantity. Let
us call his connection Γ̂αβ. Then he defines implicitly a metric Gαβ = Gβα

by the relation

Γ̂α
γGγβ + Γ̂β

γGαγ = dGαβ , (5)
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see his equations [1, eq. (7)] and [1, eq. (8)]. The Gαβ , defined by (5), can be

taken for raising and lowering indices, such as in Γ̂αβ := Γ̂αγGγβ , for example.
Then (5) can be rewritten as

2Γ̂(αβ) = dGαβ . (6)

If we compare (6) with (1), we recognize that the ansatz (5), which represents
40 independent equations, is equivalent to the assumption

Q̂αβ := −D̂Gαβ = 0 . (7)

Of course, this can also be seen directly from (5), since

dGαβ − Γ̂α
γGγβ − Γ̂β

γGαγ =: D̂Gαβ . (8)

In other words, the equation (5), postulated by Megged, amounts to the as-
sumption of a vanishing nonmetricity Q̂αβ = 0. And then it is not surprising
to fall back to the metric-compatible Riemann-Cartan spacetime.

Acknowledgments: We are grateful to Ofer Megged for discussions and for
making his paper available to us prior to publication.
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